技术

西门子VDO :模拟制造动系统最坏的情况

ainet.cn   2009年01月05日

电子楔制动器(仿真)是一种线控制动系统,系统内干器在每个车轮。 强劲的自我强化造成的楔形原则导致比较低功耗驱动器,因此,该系统不受至42 V技术。 附加主要优点相比传统液压制动系统动力学较高,导致制动距离短,减少空间的需求,个性化的刹车踏板的感觉,延长诊断的可能性等。电气制动系统也带来了特别的挑战安全工程的系统已经投入运行的情况下单一故障,绝不能导致一个危险的局势在这种情况下。特别的重点是放在两个危险的情况下不受欢迎的制动和刹车力不足,在一个或多个车轮。 刹车一旦不受欢迎的检测,故障沉默机制被激活相应的驱动器,完全释放刹车就这个车轮。

The strong self-reinforcement resulting from the wedge principle leads to comparatively low power consumption of the actuators and hence, the system is not bound to 42 V technology. Additional major advantages as compared to conventional hydraulic brake systems are higher dynamics leading to shorter braking distance, reduced space requirements, personalization of the brake pedal feel, extended diagnostic possibilities and others. An electrical brake system also poses special challenges to safety engineering as the system has to be operational in case of a single fault and must not lead to a dangerous situation in this case. Special focus has to be put on the two dangerous cases of undesired braking and on insufficient brake force at one or more wheels.Once undesired braking is detected, a fail-silent-mechanism is activated in the corresponding actuator that completely releases the brake on this wheel.

为了提供安全功能的制动系统,制动冲击故障的车辆动力学和可控性的司机必须了解和交代。 在模拟驾驶情况进行了评价,其中故障产生最严重的负面影响,抵制措施已经制定出来。作为一个例子,如制动不良,讨论与激活失败沉默机制,楔形制动单元。 其次,一些结果制动不足有关,而驾驶的曲线高速。

To provide functional safety of the braking system, the impact of brake malfunctions on vehicle dynamics and controllability by the driver must be known and accounted for.In simulations, driving situations have been evaluated, in which malfunctions have the most negative effects, and counteracting measures have been developed. As an example, the case of undesired braking is discussed with activation of the fail-silent mechanism at the wedge brake unit.Secondly, some results are presented concerning insufficient braking while driving in a curve at high speed.

不受欢迎的制动术语“不受欢迎的刹车”用在这里的含义是测量刹车力的车轮单位显着高于相应的刹车力的需求(大约讲“ 30 % ) 。 从功能安全的角度的一个重要问题是如何快速的失败保持沉默的机制是有效的。一些模拟结果表明在这里回答这个问题。

1. 1 。 Undesired braking The term "undesired braking" is used here with the meaning that the measured brake force on a wheel unit is significantly higher than the corresponding brake force demand (roughly speaking > 30 %).From functional safety point of view an important question is how fast the fail-silent mechanism has to be effective. Some simulation results are shown here to answer this question.

对于模拟,商业软件汽车制造商的汽车公司IPG集团( IPG集团汽车公司, Bannwaldallee 60 , 76185 Karlsruhe ,德国, . )和Matlab的Simulink ( MathWorks公司公司, 3个苹果希尔道,美国马萨诸塞州Natick 01760 -2098 , )的使用。该刹车力控制器的试验车辆和模型的楔形刹车器已被纳入仿真为基础的框架内,汽车制造商。 此外, “梯度驱动” ,即司机在汽车模型,控制方向盘角度弯曲的后续跟踪。 驾驶情况如下:汽车驾驶的圆形轨道半径R = 250米,逆时针的方向,摩擦系数是μ = 1.0和速度比为120公里/小时 经过15语一个不受欢迎的发生制动刹车力的40千牛顿拦截一个或多个车轮完全。经过一段时间ΔT场= ( 50 , 100 , 250 , 500毫秒)的失效安全机制有缺陷的车轮单位启动和刹车力变成零。 的影响制动脉冲对车辆动力学和司机的指导活动取决于脉冲长度ΔT场进行了调查。

For the simulations, the commercial software CarMaker of IPG Automotive GmbH (IPG Automotive GmbH, Bannwaldallee 60, 76185 Karlsruhe, Germany, .) and Matlab Simulink (The MathWorks Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, ) are used. The brake force controllers of our test vehicles and a model of the wedge brake actuator have been integrated into the Simulink-based framework of CarMaker.Furthermore, the "IPG-DRIVER", ie the driver model in CarMaker, controls the steering wheel angle to follow the curved track.The driving scenario is as follows: The car is driving on a circular track with radius r=250 m in counter-clockwise direction, the coefficient of friction is µ=1.0 and the velocity is v=120 km/h.After 15 s an undesired braking occurs with a brake force of 40 kN blocking one or more wheels completely. After an additional period of time ΔT= {50, 100, 250, 500 ms} the fail-safe mechanism of the defective wheel unit is activated and the brake force becomes zero.The effects of the braking pulse on vehicle dynamics and on the driver's steering activity depending on the pulse length ΔT have been investigated.

故障可能发生在一个或多个车轮。引用14个不同的案件的故障,一个简单的方法,下面的语法为: 0的数目是“没有故障”和1号的故障相应的车轮。在这一章中,故障是一个不受欢迎的制动和下一章制动不足。这四个轮子列在连续的顺序为:前左,前右,后左,后方的权利。 例如,在两个案件0101故障发生在同一时间,即在前线和后方的权利,有权车轮。的讨论,不同的信号和数量已经评估和计算,例如,横向之间的距离车辆的重心,中间车道,行车时间点,距离车道过境,偏航率,侧滑角,方向盘角度和他们的积分和梯度。在这里,一些例子和临界状态的讨论依赖类型的故障和ΔT场。

A malfunction can occur on one or more wheels. To reference the 14 different cases of malfunctions in a simple way, the following syntax is used: The number 0 stands for "no malfunction" and the number 1 for a malfunction on the corresponding wheel. In this chapter, the malfunction is an undesired braking and in the next chapter an insufficient braking. The four wheels are listed in consecutive order: front-left, front-right, rear-left and rear-right.For example, in case 0101 two malfunctions occur at the same time, namely on the front-right and rear-right wheels. For the discussion, different signals and quantities have been evaluated and calculated, eg lateral distance between vehicle's center of gravity to the middle of lane, time to lane crossing, distance to lane crossing, yaw rate, sideslip angle, steering wheel angle and their integrals and gradients. Here, some examples and the criticality are discussed in dependence of the type of malfunction and ΔT.

图1显示的横向距离为ΔT场= 250毫秒(顶端)和50毫秒(底部) 。为ΔT场= 250 ms和案件0011和1011的驱动程序无法保持汽车的弧形轨道。 在案件1101和1100 ,最高横向距离大于1.5米,车辆离开车道(汽车假定中间的车道在t = 15 s和内线宽度为3米) 。在其余的盲目情况下,车辆仍然线。为ΔT场= 50毫秒的车辆暂时离开车道只有在1011 。 这起案件的可能性很小,因为3月发生故障必须在同一时间。
Figure 1 shows the lateral distance for ΔT = 250 ms (top) and 50 ms (bottom). For ΔT = 250 ms and the cases 0011 and 1011 the driver is not able to keep the car on the curved track.In cases 1101 and 1100, the maximum lateral distance is larger than 1.5 m and the vehicle leaves the lane (The car is assumed to be in the middle of the lane at t=15 s and the lane width is 3 m). In the remaining uncritical cases, the vehicle remains in lane. For ΔT = 50 ms the vehicle temporarily leaves the lane only in the case 1011.This case is very unlikely because 3 malfunctions must happen at the same time.


lateral distance after undesired braking and fail silent (250 ms) 横向距离后制动不良,不能保持沉默( 250毫秒)
at t=15 (v=120 km/h) 在t = 15 (五= 120公里/小时)



lateral distance after undesired braking and fail silent (50 ms) 横向距离后制动不良,不能保持沉默( 50毫秒)
at t=15 (v=120 km/h) 在t = 15 (五= 120公里/小时)

Figure 1: Lateral distance after undesired braking for ΔT = 250 ms and 50 ms 图1 :横向距离后制动不良的ΔT场= 250毫秒和50毫秒


图2显示了偏航率最高内发生的第一个5秒后制动不良。显然,最大的偏航率下降,下降ΔT场。 减少是重要的,除非案件中,车轮与内非常小的车轮荷载的影响( 1000 , 0010 ) 。 第二个价值图2是不可分割的侧滑角率首次超过5秒后开始的不受欢迎的刹车。案件中,车离开车道被排除。 积分的侧滑角率取决于强烈的价值ΔT场,是一个良好指标的重要性不受欢迎的制动方面偏离车道。这两个动画和提到的情况与ΔT场一千○一十〇 = 250 ms和ΔT场= 500毫秒。 图2 :最大偏航率和积分的侧滑角率为不受欢迎的制动(在底部图,案件中,汽车离开车道被排除)

Figure 2 shows the maximum yaw rate occurring within the first 5 seconds after undesired braking. Evidently, the maximum yaw rate decreases with decreasing ΔT.
The decrease is significant except in cases in which inside wheels with very small wheel loads are affected (1000, 0010).The second value in Figure 2 is the integral of sideslip angle rate over the first 5 seconds after begin of undesired braking. Cases in which the car leaves the lane are left out.The integral of sideslip angle rate depends strongly on the value ΔT and is a good indicator for the criticality of undesired braking with respect to lane departure. The two animations and refer to the case 1010 with ΔT = 250 ms and ΔT = 500 ms.Figure 2: Maximum yaw rate and integral of sideslip angle rate for undesired braking (In the bottom diagram, cases in which the car leaves the lane are left out)


The controllability of undesired braking can roughly be classified 可控的不受欢迎的制动可以大致分为
as shown in table 1: 如表1所示:

50 ms 50毫秒 100 ms 100毫秒 250 ms 250毫秒 500 ms 500毫秒 Remarks 备注
controllable 可控 all except 1011所有除第1011 all except 1011所有除第1011 0100, 0001, 0110, 0101, 1101, 0111, 1000, 0010, 1001, 1010 0100 , 0001 , 0110 , 0101 , 1101 , 0111 , 1000 , 0010 , 1001 , 1010 0100, 0001, 0110, 1000, 0010 0100 , 0001 , 0110 , 1000 , 0010 The IPG-DRIVER is able to bring the vehicle back to center of lane without lane departure (max. lateral distance < 1.5 m) IPG集团的车手也能够使车辆回到中心的车道没有偏离车道(最大横向距离“ 1.5米)
critical 关键 1011 1011 1101, 1100 1101年, 1100 1101, 1100, 0101, 0111, 1110, 1010 1101 , 1100 , 0101 , 0111 , 1110 , 1010 The vehicle leaves the own lane but not the road (1.5 m < max. lateral distance < 6 m).车辆离开自己的车道而不是公路( 1.5米“最多。横向距离” 6米) 。 In simulations, the vehicle returns to center of lane.在模拟试验,车辆返回到中心的车道。
not controllable 不可控 none毫无 none毫无 0011,1011 0011, 1011, 1001 0011 , 1011 , 1001 The vehicle leaves the own lane and road (max. lateral distance > 6 m).车辆离开自己的车道和公路(最大横向距离“ 6米) 。 IPG-DRIVER is not able to bring the vehicle back to center of lane. IPG集团司机无法使车辆回到中心的车道。
Table 1: Classification of controllability of undesired braking 表1 :分类可控性不良制动

总之,价值ΔT场应尽可能低,以避免负面影响车辆动态。用一切手段,其价值ΔT场应低于100毫秒。然而,可取的做法是ΔT场= 50毫秒或更低获得较低的偏航率,侧滑角率和方向盘角度(未显示) 。In summary, the value ΔT should be as low as possible to avoid negative effects on vehicle dynamics.  By all means, the value ΔT should be lower than 100 ms. However, it is preferable to have ΔT=50 ms or lower to get lower yaw rates, side slip angle rates and steering wheel angles (not shown).

2. 2 。 不足的制动在第二的情况下,驾驶赛车在同一轨道弯曲在上一节与V =一百二十○公里每小时逆时针。与此相反的前款,更高的制动功能(按ESC包括: ABS )可用。当司机进行全面制动,共损失制动性能的一个或多个车轮发生。 例如,在0110例,制动力量仍然是零的右前方和后方离开方向盘。 Insufficient braking In the second scenario, the car is driving on the same curved track as in the previous section with v=120 km/h counter-clockwise. In contrast to the previous paragraph, higher brake functions (ESC including ABS) are available. When the driver performs a full braking, a total loss of brake performance on one or more wheels occurs.For example in case 0110, the brake force remains zero on the front right and rear left wheel.

lateral distance to center of lane after insufficient braking 横向距离中心的车道后,制动不足
at t=15 (v=120 km/h) 在t = 15 (五= 120公里/小时)


yaw rate after insufficient braking at t=15 (v=120 km/h) 偏航率不足,制动后在t = 15 (五= 120公里/小时)

Figure 3: Lateral distance and yaw rate after insufficient braking 图3 :横向距离和偏航率不足后制动

In addition to lateral distance and yaw rate (figure 3), the changes of sideslip and steering wheel angles over the first 5 seconds of insufficient braking are suitable measures of the controllability of the vehicle (figure 4, table 2).除了横向距离和偏航率(图3 ) ,变化的侧滑和方向盘角度的头5秒的不足是合适的制动措施的可控性的车辆(图4 ,表2 ) 。


Figure 4: Integral of sideslip angle and steering wheel angle rate after insufficient braking 图4 :积分侧滑的角度和方向盘角率不足后制动

Controllability 可控 Cases Remarks 备注
less critical 同样重要 1100, 1000, 1001 1100 , 1000,1001 small yaw rate, little steering activity小偏航率,很少指导活动
critical 关键 0110, 0011, 1101, 0111, 0010, 1110, 1011, 1010 0110 , 0011 , 1101 , 0111 , 0010 , 1110 , 1011 , 1010 max.最大值。 lateral distance < 0.3 m, max.横向距离“ 0.3米,最大。 yaw rate < 12 deg/s偏航率“ 12度/秒
highly critical 高度危急 0100, 0001, 0101 0100 , 0001 , 0101 max.最大值。 lateral distance > 0.3 m, max.横向距离“ 0.3米,最大。 yaw rate > 12 deg/s, high steering activity and sideslip angle rate偏航率“ 12度/秒,高指导活动和侧滑角率
Table 2: Classification of controllability of insufficient braking 表2 :分类可控性不足,制动

.仿真上面所讨论的意外制动和制动不足,目前正在继续覆盖了广泛的目录驾驶的情况。结果这些模拟和相应的车辆试验有助于找到适当的规范,安全管理措施的刹车制动装置和设计稳定的职能在中央车辆控制的水平。.这些措施的成效将首先在模拟测试的同一类型,其中减少的努力,随后的车辆试验。
The simulations discussed above for unintended braking and insufficient braking are currently continued to cover an extensive catalogue of driving situationsThe results of these simulations and corresponding vehicle tests help to find appropriate specifications for safety measures in the brake actuators and to design stabilizing functions on a central vehicle control level. The effectiveness of these measures will first be tested in simulations of the same kind, which reduce the effort of subsequent vehicle tests
Dr. Martin Pellkofer 马丁Pellkofer
Siemens VDO Automotive西门子威迪欧汽车
University education:大学教育:
1992-1997: Studies of physics (diploma) at the University of Regensburg, Germany. 1992-1997年:研究物理学(文凭)在雷根斯堡大学,德国。
1997-2002: PhD in the field of Active Vision and decision making for autonomous vehicles. 1997-2002年:博士领域的主动视觉和决策的自主车辆。
Professional activities:专业活动:
Since 2002: Development engineer at Siemens VDO, Domain Chassis.自2002年以来:开发工程师西门子VDO ,网域底盘。 Current field of work: Algorithm development in the areas vehicle dynamics and functional safety.当前的工作领域:算法发展领域车辆动力学和功能安全。
Dr. Andreas Mayer 安德烈博士梅耶
Siemens VDO Automotive西门子威迪欧汽车
University education:大学教育:
1977-1983: Studies of physics and mathematics at the University of Münster, Germany. 1977至83年:研究物理和数学大学的Münster ,德国。
1983: Diploma in Physics 1983年:在物理文凭
1985: PhD in solid state physics at the University of Münster 1985年:博士在固体物理学在明斯特大学
Professional activities:专业活动:
1986-1991: Research on various topics in solid state physics and nonlinear optics at universities in Italy, Germany, USA and the UK. 1986-1991年:研究各种议题的固体物理和非线性光学大学在意大利,德国,美国和英国。
1991-2002: Lecturer at the University of Regensburg, Germany 1991-2002年:讲师雷根斯堡大学,德国
Since 2002: Development engineer at Siemens VDO, Domain Chassis.自2002年以来:开发工程师西门子VDO ,网域底盘。 Field of work: Algorithm development in the areas vehicle dynamics and sensor systems.外勤工作:算法发展领域车辆动力学和传感器系统。


Author(s): Dr. 作者(星期日) : 博士 Martin Pellkofer and Dr. Andreas Mayer 马丁Pellkofer和安德烈博士梅耶

(转载)

标签:制造动系统 我要反馈 
泰科电子ECK、ECP系列高压直流接触器白皮书下载
亿万克
专题报道
2025全景工博会
2025全景工博会

第二十五届中国国际工业博览会(简称“中国工博会,CIIF”)将于今年9月23至27日在国家会展中心(上海)举行。 [更多]

智能制造标杆企业展播
智能制造标杆企业展播

为了讲述我国实体经济推进高质量发展的鲜活实例,发挥好典型企业实施智能制造的示范作用,提振广大制造业企业推进转型升级的信心... [更多]

2025世界人工智能大会
2025世界人工智能大会

2025世界人工智能大会暨人工智能全球治理高级别会议(简称“WAIC 2025”)将于7月在上海世博中心和世博展览馆举行... [更多]